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Abstract-We present an innovative approach to the design of fault- processors agree on exactly the same sequence of broadcast 
tolerant distributed systems that avoids the several rounds of message 
exchange required by current protocols for consensus agreement. The 

messages. 
approach is based on broadcast communication over a local area It is easy to demonstrate that placing a total order on 
network, such as an Ethernet or a token ring, and on two novel protocols, broadcast messages, so that every working processor proc- 
the Tram protocol, which provides efficient reliable broadcast communi- esses the same messages in the same order, provides an 
cation, and the Total protocol, which with high probability promptly immediate solution to the agreement problem. Once this total 
places a total order on messages and achieves distributed agreement even 
in the presence of fail-stoo. omission. timing, and communication faults. order is determined, distributed actions can be carried out 
Reliable distributed operations such as locking, update and commitment, using simple sequential fault-tolerant algorithms. The strategy 
typically require only a single broadcast message rather than the several is very efficient: for example, locking records in a distributed 
tens of messages required by current algorithms. database typically requires only a single broadcast message to 

claim a lock and a single broadcast message to release it. 
Index Terms-Agreement problem, broadcast communication, com- 

munication protocols, distributed systems, fault tolerance, local area 
Based on this strategy, it is possible to design simple and 

networks, total order. efficient but very robust distributed systems. 

I. INTRODUCTION A. Existing Agreement Protocols 

M  ANY important activities in a distributed system involve 
simultaneous coordination of several processors. The first areas of computer science to directly address the 

Among these are scheduling and load balancing, synchroniza- problems of reaching agreement in a fault-tolerant system 
tion, process migration, remote procedure calls, nested atomic were those of distributed databases [l] and remote procedure 
transactions, access to distributed information, locking, up- calls [4]. In neither case were good solutions immediately 
date and commitment, and transaction logging. All of these forthcoming and it soon became apparent that the general 
activities require agreement among processors as to which problem of reaching agreement in a system subject to faults 
processor should undertake, or has undertaken, an action. underlay many of the difficulties encountered. Subsequently, 

Unfortunately, significant problems exist in the design of it was shown that the problem of reaching agreement is not 
algorithms for reaching asynchronous distributed agreement merely hard but actually impossible in an asynchronous 
when processors can fail. Aside from some strong impossibil- system [14]. Asymptotic protocols were devised that reach 
ity results [ 131, [ 141, [21], existing algorithms are very agreement with high probability but with correspondingly high 
expensive, requiring for a group of five processors, 40 costs [5], [6], [23]. 
messages, and perhaps 40 acknowledgments to reach agree- The most detailed existing description of a reliable atomic 
ment with no failures and more messages in the presence of broadcast protocol is that of Chang and Maxemchuk [7], [S]. 
processor failures or communication errors [23]. Thus, all of All messages pass through an intermediary node, called the 
the activities above, activities that are essential to distributed token site; an elegant token-passing protocol is used to detect 
systems and distributed applications, are rather expensive. failures at the token site, to select a new token site, and to 

We present a novel efficient approach to asynchronous retransmit messages affected by the failure. Typically, about 
distributed agreement that is based on broadcast communica- three messages are required for each broadcast message, and 
tion. The basic strategy consists of the latency is reasonable at low loads but increases at high 

l an efficient broadcast (or multicast) protocol, the Trans loads. As with almost all of the other protocols described here, 
protocol, which ensures that every message broadcast or the need to recognize a failed processor, and to reconfigure the 
received by any working processor is received by every system to exclude it, introduces long delays when a processor 
working processor, and fails. 

l an efficient protocol, the Total protocol, which with high Kopetz [ 171, [ 181 developed and implemented a practical 
probability promptly places a total order on broadcast mes- atomic multicast protocol for real-time systems. His Mars 

sages, ensurmg that even in the presence of faults all working system is fully synchronous and uses a TDMA broadcast 
medium with simple algorithms and low overhead. Failure of a 
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avoid the impossibility results associated with fully asynchron- 
ous systems, his system uses loosely synchronized clocks and 
timeouts with an upper bound on message transit time. More 
flexible is the V system [9] which employs broadcasting but 
makes no guarantee of delivery or recovery. Higher efficiency 
is obtained at the cost of passing much of the work of recovery 
on to the application program. Cheriton [lo] also investigated 
multicast protocols, accepting the inevitability of multiple 
acknowledgments but demonstrating that careful optimization 
of the protocol can reduce the costs to a more acceptable level. 

Luan and Gligor [ 191 devised an atomic broadcast protocol 
based on a variation of three-phase commit that uses voting to 
avoid blocking. Their algorithm requires over 4n messages 
per atomic broadcast in a system of size n, but under high load 
conditions many messages can be ordered per execution of the 
protocol so that the overhead can become quite low. The 
latency of the algorithm remains high however. The algorithm 
can operate without explicitly detecting the failure of proces- 
sors. Garcia-Molina and Spauster [ 151 have also devised 
algorithms for atomic multicast based on point-to-point com- 
munication over a spanning tree. 

Quite close in concept to our approach is the ISIS system of 
Birman and Joseph [2], [3], which is based on the idea of 
broadcasting and placing a total order on broadcast messages. 
ISIS differs, however, in that its developers did not have an 
efficient broadcast acknowledgment protocol, such as the 
Trans protocol, available to them, and their total order 
protocol, due to Skeen is less efficient than the Total protocol. 
To recover reasonable efficiency, ISIS employs the ingenious 
ideal of virtual synchronous application programs, but the 
overhead costs are still high. 

Peterson, Buchholz, and Schlichting [24] devised the Psync 
protocol which also uses an approach similar to ours, 
constructing a partial order which is then converted into a total 
order. However, their algorithms are weaker than Trans and 
Total, requiring the system to be partially synchronous and to 
block until a failed processor is detected and removed from the 
configuration. 

B. Context of the Broadcast Protocols 
Our broadcast communication model is intended to match 

typical local area networks, such as the Ethernet or the token 
ring. Processors are selected to broadcast at random from 
among the processsors seeking to use the communication 
medium. A processor’s broadcast message is received imme- 
diately or not at all by the other processors. Broadcast 
messages are assumed to satisfy the requirements of the Trans 
and Total protocols described below. 

A reception fault occurs when a processor fails to receive a 
broadcast message. Reception faults are caused relatively 
infrequently by the physical communication mechanisms and 
rather more frequently by exceeding the processing and 
message buffering capacity of the processor. The choice of 
processors at which a reception fault occurs is assumed to be 
random rather than malicious. Network partitioning faults are 
accommodated, and the protocols continue to operate uninter- 
rupted in a component of the partition with at least 2n/3 
processors. 

The model also assumes that processors are subject to fail- 
stop, omission, and timing faults but not to malicious faults. A 
processor that has failed makes no further broadcasts, while a 
working processor continues to broadcast, although not 
necessarily within any fixed time constraint. In a partitioned 
system, the processors in a component of the partition appear 
to have failed to processors in the other components. 

Operating systems, particularly Unix, are prone to pauses of 
a few seconds during which little happens even though the 
processor has not failed and normal processing will resume. 
Protocols that are required to detect processor failures in order 
to make decisions must accept occasional pauses during which 
the whole system stops briefly or, alternatively, abort proces- 
sors and incur frequently the overhead of determining a new 
configuration. 

The Trans and Total protocols do not attempt to detect 
processor failures because, as data link layer protocols, they 
must make decisions very quickly, typically within a few 
mill iseconds or tens of mill iseconds. Rather, as fault-tolerant 
protocols, they determine a total order promptly with high 
probability even in the presence of failed processors, recover- 
ing automatically from transient processor failures and tran- 
sient network partitioning. However, for effective implemen- 
tation, detection of failed processors by a higher-level protocol 
of the protocol hierarchy is required. For example, the Trans 
protocol retains copies of messages until they have been 
received and acknowledged by all processors in the configura- 
tion. Consequently, the protocol must be informed that a 
processor has failed and has been removed from the configura- 
tion so that message buffer space can be recovered. 

The design of the Trans and Total protocols assumes that the 
communication interface will include an interface processor 
and buffer space sufficient to receive, buffer, process, and 
acknowledge every message delivered by the communication 
medium. Much of the processing costs of these protocols will 
be carried by the communication controller rather than by the 
main processor, and only messages intended for the main 
processor need be delivered to it even though the communica- 
tion controller processes every message. Although simple 
Ethernet controllers do not have this capability, controllers 
that accept and process every message can readily be 
designed. Bearing in mind the importance of communication 
in high-performance distributed systems, the expense of a 
capable communications interface processor, while not negli- 
gible, should be compared to the costs of sophisticated display 
and disk controllers in modern computers. 

II. THE TRANS BROADCAST PROTOCOL 

Many distributed computer systems use a communication 
mechanism that is physically a broadcast medium, such as an 
Ethernet, token ring, 1553 bus, or packet radio system. The 
advantage of a broadcast communication medium is that it 
makes distribution of a message simultaneously to several 
destinations physically possible. Existing standard communi- 
cation protocols do not allow distributed systems to make use 
of the broadcast capability of the physical communication 
medium. Rather, existing protocols require all messages to be 
point-to-point from a single source to a single destination. 
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The Trans broadcast protocol [20] uses a combination of 
positive and negative acknowledgment strategies to achieve 
efficient reliable broadcast or multicast communication. Mes- 
sages can be broadcast simultaneously to many destinations 
without the need for explicit acknowledgment by every 
recipient. An Observable Predicate for Delivery determines 
which processors have received a message, even though they 
did not acknowledge it directly. 

Trans provides reliable communication despite a noisy 
communication medium and processor fail-stop, omission, or 
timing faults. Multicast, rather than fully broadcast, communi- 
cation is readily achieved by operating several subnets over the 
same local area network, a standard feature provided by 
existing protocols. Alternatively, a destination address list 
may be used to denote the processors for which the message is 
intended; other processors will typically receive and possibly 
acknowledge the message but will otherwise ignore it. 

Within the IS0 protocol hierarchy, the primary responsibil- 
ity for ensuring reliable transmission across the broadcast 
medium lies with the data link layer [ 121. The Trans protocol 
is directed towards that layer of the hierarchy and provides 
services appropriate to that layer only. While Trans can 
determine whether a processor has acknowledged receipt of a 
message, it relies on a higher-level protocol to determine 
network membership following a failure. 

By the performance measures of number of messages and 
utilization of the communication medium, the Trans protocol 
is clearly better than typical point-to-point protocols whenever 
the application requires broadcasting or multicasting. The 
most significant performance advantages of Trans result, 
however, from its use in conjunction with the Total protocol to 
achieve agreement in fault-tolerant distributed systems. 

A. The Protocol 

The basic idea behind the Trans protocol is that acknowl- 
edgments for broadcast messages are piggybacked on mes- 
sages that are themselves broadcast and typically seen by all 
other processors. The operation of Trans is illustrated in the 
following scenario: 

-Processor P broadcasts a message. 
-The message from processor P is received uncorrupted by 

processor Q. 
-Processor Q  includes a positive acknowledgment for P’s 

message in Q ’s next message. 
-Processor R on receiving Q ’s message is aware that P’s 

message has been acknowledged and that there is no need for 
R  also to acknowledge it in its next message; instead processor 
R acknowledges Q ’s message. 

-If processor R has not received the message from P, the 
message from Q  alerts R of this loss and, therefore, R  includes 
a negative acknowledgment for P’s message in R’s next 
message. 

We now give a property-theoretic definition of the Trans 
protocol. We wish to define just those properties of the 
protocol that are necessary for correct operation and to avoid 
confusing them with the details of one specific implementation 
that is in no way preferable to any other. Thus, we define the 
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data link layer protocol Trans by means of the following 
requirements: 

Message Format 
l Each message is broadcast with a header in which there is 

a message identifier containing the identity of the broadcasting 
processor and a message sequence number. Other fields of the 
header, such as a message destination address list for 
multicasting, may be present but do not play a part in the 
protocol. 

l Retransmissions are identical to the original transmission. 
The retransmitted message thus contains exactly the same 
acknowledgments, positive and negative, as the prior trans- 
mission of the message. Note that the retransmission can be 
broadcast by any processor, not just by the processor that 
originated the message. 

l To avoid large delays in a lightly loaded system, if a 
processor has no messages pending, it may construct a null 
message to carry acknowledgments. The acceptable delay 
before transmitting a null message may differ for positive and 
negative acknowledgments. 

Data Structures 
Each processor maintains 
l An acknowledgment list of message identifiers with 

positive and negative acknowledgments. The acknowledg- 
ments in this list are transmitted with the next message the 
processor broadcasts. 

l A received list of messages the processor has received 
uncorrupted, or has broadcast in the recent past, and may need 
to rebroadcast. Messages are retained in this list until there is 
no possibility of retransmission being required. 

l A pending retransmissions list of message identifiers. 
The processor received each of these messages and also a 
negative acknowledgment for each of them. These messages 
will be retransmitted by the processor unless it observes that 
they have already been broadcast by some other processor. 

Sending a Message 
l When a processor prepares a message for broadcast, it 

appends its acknowledgment list to the message. Positive 
acknowledgments that are appended to the message are 
removed from the acknowledgment list, but negative acknowl- 
edgments are retained. If there are too many acknowledgments 
to append to the current message, negative acknowledgments 
are given priority over positive acknowledgments. 

Receiving a Message 
When a processor receives a message, 
l It adds the message identifier with a positive acknowledg- 

ment to its acknowledgment list and adds the message to its 
received list. If the message identifier is present with a 
negative acknowledgment in the acknowledgment list, it 
deletes the identifier from that list. If the message is present in 
the retransmissions list, it deletes the message from that list 
as well. 

l If a positive acknowledgment is appended to the message, 
the processor deletes from its acknowledgment list any 



www.manaraa.com

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL. 1, NO. 1, JANUARY 1990 

matching positive acknowledgment. If the acknowledgment is 
for a message that is not in its received list (i.e., for a message 
that it has not received), it adds the identifier for that message 
with a negative acknowledgment to its acknowledgment list. 

l If a negative acknowledgment is appended to the message 
then, if the acknowledged message is already on its received 
list, the processor adds the message identifier to its retransmis- 
sions list; otherwise, it adds the message identifier to its 
acknowledgment list with a negative acknowledgment unless 
the identifier is already present. 

l A processor can also recognize that it has not received a 
message when it receives a message with a sequence number 
more than one greater than the largest sequence number of a 
message in its acknowledgment list from the same source. 
Again, one or more identifiers with negative acknowledg- 
ments are added to its acknowledgment list. If there is a large 
discontinuity in sequence numbers, it may be preferable not to 
attempt to recover the missing messages at the data link level, 
but rather to refer the problem to the network level of the 
protocol hierarchy. 

Retransmission Timeout 
l If a processor has not received a positive acknowledg- 

ment for a message it broadcast within some time interval, it 
adds the message to its retransmissions list. 

Pruning the Received List 
l A broadcast message with the appended acknowledg- 

ments is retained in the received list until the processor has 
determined (using the Observable Predicate for Delivery) that 
all of the processors in the configuration have received that 
message. 

The protocol described above is reliable against momentary 
transmission failures. It can operate over networks that are 
connected but not completely connected and even where the 
interconnection topology changes dynamically. However, 
under such circumstances, the efficiency of the protocol is 
adversely affected. 

B. Examples 
As an example of the operation of Trans, consider the 

following message sequence in which upper-case letters 
represent messages (we do not bother to denote the source of 
the message directly), lower-case letters represent acknowl- 
edgments, and overhead bars denote negative acknowledg- 
ments. 

A Ba Cb DC Ecd Cb Fee 

Here message A is only acknowledged by message B. Other 
processors that are aware of the presence of B’s acknowledg- 
ment do not acknowledge A in their subsequent messages. It is 
this feature that reduces the number of acknowledgments 
required. Note that the positive acknowledgment of C  that 
accompanies ,message D alerts a processor that it did not 
receive message C and, thus, causes the negative acknowledg- 
ment of C  that accompanies message E. This negative 
acknowledgment triggers a retransmission of C with precisely 
the acknowledgments that accompanied the original transmis- 

sion; thus, the retransmission cannot acknowledge message E 
that caused the retransmission. The processor broadcasting 
message F also acknowledges message E in addition to 
message C; in doing so, it implicitly acknowledges messages 
B and D and, through B, message A as well. Thus, each 
message will contain typically only a few acknowledgments 
but will implicitly acknowledge many other messages through 
the transitivity of positive acknowledgments. 

The effect of missing several messages can be seen in this 
next example. 

A Ba Cb DC Ecd Cb Fiiec Ba Gfb 

Here the processor broadcasting message E received neither 
message C nor B, but is informed by message D only of the 
loss of C. When C is retransmitted with a positive acknowl- 
edgment for B, the processor becomes aware that it missed B 
too and transmits a further negative acknowledgment with 
message F. Thus, a short sequence of missing messages can be 
recovered quite quickly and easily; of course, this technique is 
inappropriate for recovery from an extended processor failure. 

The simple linear sequence of acknowledgments shown 
above may be rather optimistic. Checking the cyclic redun- 
dancy code, manipulating the acknowledgment queues, and 
constructing message packets all take time, but efficient use of 
the communication medium requires that the next message be 
transmitted with as little delay as possible. Thus, the idealized 
expectation that reception of a message will be reflected in the 
acknowledgments that accompany the next message is unreal- 
istic and is not required by the Trans protocol. Delays in 
broadcasting acknowledgments and the broadcasting of extra 
acknowledgments, either positive or negative, have no logical 
effect on the protocol and only a small effect on performance, 
as shown in the next example which assumes that no message 
is acknowledged by the next broadcast message. 

A B Ca Dab Ebc Fed Gcde Hef Ca Igh Jghc 

Here, because messages are not processed instantaneously, 
each message is acknowledged by two subsequent messages. 
Note that the negative acknowledgment mechanism is still 
effective in provoking the necessary retransmission. 

C. The Partial Order 
Trans is a very robust protocol that is resilient to most forms 

of failure, with the exception of Byzantine failures and 
complete failure of the communication medium. It is easy to 
prove an Eventual Delivery Property, which states that for any 
message, eventually, if any working processor has broadcast 
or received the message, then all working processors have 
received it [20]. 

The positive and negative acknowledgments contained in 
messages permit processors to determine whether a processor 
has received a message even though the processor did not 
acknowledge the message directly. We define an Observable 
Predicate for Delivery, denoted by OPD(P,A,C), which 
states that processor P can be certain that the processor that 
broadcast message C has received and acknowledged, directly 
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Fig. 1. The graphical representation of the positive acknowledgments 
represented by arrows and negative acknowledgments represented by lines 
marked with x’s in a sequence of broadcasts by four processors. 

or indirectly, message A at the time of broadcasting message 
C. The predicate is true if and only if processor P receives a 
sequence of messages, not necessari ly consecutive broadcast 
messages, such that 

l The sequence commences with message A and ends with 
message C. 

l Every message of the sequence, other than A, positively 
acknowledges its predecessor in the sequence or is broadcast 
by the processor that broadcast its predecessor in the se- 
quence. 

l No message in the sequence is negatively acknowledged 
by message C. 

By enumeration, the Observable Predicate for Delivery can 
be used to determine that a message has been received by all 
processors in the configuration and can therefore be deleted 
from the data structures maintained by the Trans protocol. The 
Observable Predicate for Delivery enables the processors to 
construct a partial order relation on the broadcast messages. 

The Partial Order: In the partial order constructed by 
processor P, message C follo ws message B if and only if 
OPD(P, B, C) and, for all messages A, OPD(P, A, B) 
implies OPD(P, A, C). 

The partial order satisfies an important property, the Prior 
Reception Property, which states that if message C is included 
in the partial order, then at the time processor PC broadcast 
message C, it had received and acknowledged, directly or 
indirectly, all messages that precede C in the partial order. 
Note that OPD(P, B, C) may remain undefined indefinitely if 
processor PC, fails. In such a case, message C can never be 
included in the partial order. 

As an example of the construction of the partial order, 
consider the following sequence of messages broadcast by four 
processors where A, is the first message broadcast by 
processor P,,, etc. 

Fig. 1 graphically represents the positive and negative 
acknowledgments resulting from this sequence of messages. 
The heavy arrows represent acknowledgments while the 
lighter lines marked with X’s represent negative acknowledg- 
ments. The acknowledgment by message Dz for its predeces- 
sor Di is implicit rather than explicit. 

Fig. 2. The partial order derived from the acknowledgments shown in 
Fig. I. For example, message C, does not follow message A, because A, 
follows D, and processor PC had not received D, when broadcasting C,. 

Fig. 2 shows the partial order constructed from these 
acknowledgments. Message C, does not follow message A, 
because Ai follows D, and processor PC had not received DI 
when broadcasting C1. Rather, C2 follows Al because PC had 
received the retransmission of D, by the time that it broadcast 
Cz. Similarly, B2 does not follow C’, because Cz follows A, 
which processor Ps had not received at the time it broadcast 
Bl. Instead, B2 follows 02 since Ps received Dz and all the 
messages PO had received at that time. 

It is relatively easy to show using the Eventual Delivery 
Property that all working processors construct the same partial 
order and that the failure of a processor may result in some of 
its messages being excluded from the partial order [20]. In 
case that the network partitions, the working processors in the 
same component of the partition construct the same partial 
order. This partial order, constructed from the acknowledg- 
ments of the Trans protocol and satisfying the Eventual 
Delivery Property and the Prior Reception Property, is the 
base upon which the Total protocol is built. 

III. THE TOTAL PROTOCOL 

The objective of the Total protocol is to reach distributed 
fault-tolerant agreement by placing a total order on messages 
and by ensuring that all working processors determine the 
same total order. The Total protocol is based on the partial 
order relation derived from the acknowledgments of messages 
by the Trans protocol. There is only one partial order, which 
must be the same for all processors, but some processors may 
be aware of only part of the partial order because they have not 
yet received all of the messages that have been broadcast. 
Typically, the partial orders of the various processors differ 
only in the more recent messages. 

If the system were completely reliable, the partial order 
would be a total order. Unfortunately. it is possible for one 
message to be received by a subset of processors and another 
message to be received by a disjoint subset, thus providing no 
information by which to order them. There is also a risk that a 
processor has failed and will never be heard from again; thus, 
it must be possible to make decisions in the absence of 
messages from some of the processsors. Moreover, one or 
more processors may be unable to broadcast a message for 
some period of time, even though they have not failed, because 
of contention for the bus or other internal activities. 

Even with broadcast communication, the acknowledgments 
of messages can yield an arbitrary partial order. The impor- 
tance of broadcast communication is that such bad cases are 
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rare; broadcast communication almost always yields a partial 
order that can quickly be converted into a total order. 

The Total protocol is a fault-tolerant algorithm for convert- 
ing a partial order into a total order, whose probability of 
determining an extension to the total order asymptotically 
approaches unity as more messages are broadcast. The 
algorithm is resilient to fewer than n/3 faults where n is the 
number of processors in the system. We have also developed a 
more complex but slightly slower algorithm for determining a 
total order that is resilient to fewer than n/2 faults [22]. 

A. The Protocol 
The Total protocol needs no additional broadcast messages 

beyond those required by the Trans protocol. However, 
determination of the total order does not occur immediately 
after a message is broadcast but must wait for reception of 
broadcasts by other processors. The protocol incrementally 
extends the total order by selecting messages from those in the 
partial order but not yet in the total order. 

A message that does not follow in the partial order any other 
message aside from those already in the total order is a 
candidate message. Clearly, there must be at least one 
candidate message, and there can be at most a single candidate 
message from each source. The total order is extended by a 
decision to include a set of candidate messages in the total 
order. Each such candidate set is voted on separately. The vote 
of a message is determined by the votes of the messages that 
precede it in the partial order, and the decision of a processor 
is determined by the votes of the messages in its partial order, 
not on the decisions of other processors. 

Voting on a candidate set takes place in a sequence of 
stages; different candidate sets have different sequences of 
stages. A message votes on a candidate set in a stage only if no 
previous message from its source has already voted on the 
candidate set in that stage. In stage 0, the vote of a message on 
a candidate set depends on whether or not that message follows 
in the partial order other candidate messages. In stage i, where 
i > 0, a message votes on a candidate set if it follows in the 
partial order enough messages that voted in stage i - 1. The 
number of votes required for a decision and for a further vote 
must be at least Nd and N,, the parameters to the algorithm. 

Resil ience Nd Nu 

n+2 n-1 
1 2 2 

n+3 n-2 
2 2 2 

n+k+l 
k<; ~ 

n-k - . 
2 2 

The Total protocol is defined, completely rigorously, by the 
following voting and decision criteria; these criteria determine 
which candidate set is chosen for inclusion in the total order. 

The Voting Criteria 
In stage 0 
l A message votes for a candidate set if that message 

follows in the partial order every message in the candidate set 

Fig. 3. A  simple example for six processors in which every broadcast 
message is received by every processor. There is only one candidate set 
{A I } , and the decision to extend the total order to include message A, can 
be made as SOOII as message D, is received. 

and it follow no other candidate message. (A candidate 
message votes for the set containing only itself.) 

l A message votes against a candidate set if that message 
follows in the partial order any candidate message other than 
those in the candidate set. (A candidate message votes against 
all sets of which it is not a member.) 

In stage i where i > 0 
l A message votes for a candidate set if 

-the number of messages that if follows in the partial 
order and that voted for the candidate set in stage i - 1 is at 
least N,, and 

-it follows in the partial order fewer message that voted 
against the candidate set than voted for the set in stage i - 1. 

l A message votes against a candidate set if 
-the number of messages that it follows in the partial 

order and that voted against the candidate set in stage i - 1 is 
at least N,, and 

-it does not vote for the candidate set in stage i. 

The Decision Criteria 
In stage i where i > 0 
l A processor decides for a candidate set if 

-the number of messages in its partial order that voted 
for the candidate set in stage i is at least Nd, and 

-for each proper subset of the candidate set, the 
processor had decided against that proper subset. 

l A processor decides against a candidate set if 
-the number of messages in its partial order that voted 

against the candidate set in stage i is at least Nd. 

Once a decision has been made in favor of a candidate set, 
the messages of that set are included in the total order in any 
arbitrary but deterministic order, and the whole process is 
repeated. Since each message follows itself in the partial 
order, a message can include its own vote in stage i- 1 
towards the totals required to vote in stage i. The votes and 
decisions need not be included in the messages themselves but 
can be deduced from the acknowledgments in the messages. 

A processor can always determine the vote of a message in 
its partial order since the message would not have been placed 
in the partial order if any message that precedes it had not been 
received. The Trans protocol guarantees that if any working 
processor places a message in the partial order then eventually 
every working processor does. 
B. Examples 

First consider a one-resilient system of six processors that 
requires at least four votes for a decision and three votes for a 
further vote. Fig. 3 shows a very simple situation that might 
result when every broadcast message is received by every 
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Fig. 4. A more complex example in which messages are not received by all 
processors. Here the candidate sets {A, }, {E, } and {F, } obtain too many 
negative votes in stage 0 and, thus, are decided against, but the set (E,, F, } 
obtains four favorable votes in stage 0 from D,, C,, Ez. and F2. enough for 
a favorable decision. Even if message Fz is lost, there remain three 
favorable votes in stage 0, but there arefour favorable votes 
Ez, D2, A2, and &. again enough for a favorable decision 

in stage 1 from 

processor. There is only one candidate message A 1, and the 
messages A 1, B,, Ci, and D, are sufficient for a decision. 
Thus, every processor on receiving message D1 will decide to 
extend the total order to include message A,. To make this 
decision there is no need to know what the other two 
processors in the system are doing. 

A more difficult situation is shown in Fig. 4, where 
messages are not received by all processors. There are three 
candidate messages A it El, and F, . The candidate sets {E, } 
and {F, > are voted for only by the messages themselves. 
Messages Al and B1 vote for the candidate set {A, }, but 
messages C, and D2 do not because they follow other 
candidate messages in the partial order. Messages D,, C,, E2, 
and Fz vote for the candidate set {El, F, } , a sufficient number 
of votes for a decision. 

Note that the candidates in the set {A ,, El, FI } precede the 
four messages C,, Dz, AZ, and Bz. Thus, no processor can 
decide for the set {A ,, El, Fl } without first deciding against 
the set {El, F, }. 

We must also consider the possibility that processors may 
fail at inconvenient moments. Suppose that processor PF- fails 
some time after broadcasting message F, and before broad- 
casting Fz. The other processors do not know whether PF had 
received messages El, D1, C,, and E2 and, thus, had decided 
for the set {E,, F1 ). Nor can they be confident that PF had 
indeed failed; PF may be trying to broadcast but may be 
blocked by contention for the bus, or it may be working on an 
urgent task, or it may be taking a short siesta from which it 
will awake to announce that is has indeed received those 
messages and decided for {E,, FI } , or against, as the case may 
be. 

However,  even without knowledge of processor PF’s vote, 
three messages DI, C,, and E2 vote for the set {E,, F, } in 
stage 0, and four messages E2, Dz, AZ, and BS follow those 
three messages and, therefore, vote for {E,, F1 } in stage 1. 
Consequently, messages Ez, Dz, AZ, and BZ suffice for the 
decision to include the set {El, F, } in the total order. 

C. Validity 

The validity of the algorithm depends on showing that for 
each extension of the total order 
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l If a processor decides for (against) a candidate set, then 
no processor decides against (for) that set. 

l If a processor decides in favor of a candidate set, then no 
processor decides in favor of a different set. 

l If a processor decides in favor of a candidate set in stage 
i, then each working processor decides in favor of that set in 
stage h where h 5 i + 1. 

l If a processor includes a particular candidate set at its jth 
extension of the total order, then every working processor 
includes that set at its jth extension of the total order. 
Consequently, the total orders determined by all working 
processors are identical. 

l If a working processor broadcasts a message that follows 
each message in a candidate set S, then in each stage each 
working processor broadcasts a message that votes on S. 

l A processor cannot decide against the candidate set 
consisting of all candidate messages in its partial order. 

l If a message m ’ follows a message m in the total order, 
then m does not follow m ’ in the partial order. Thus, the total 
order is consistent with the partial order. 

Each of these properties has been proved for the n/3 
protocol and also for the n/2 protocol [22J. We can also 
demonstrate that, given reasonable behavior by the broadcast 
communication system, the probability of all processors 
remaining undecided diminishes quite quickly to zero. 

D. Performance Model 

At first sight the protocols may appear to be somewhat 
complex and, thus, likely to be slow and expensive. However,  
if the local area network has reasonable reliability, then almost 
every broadcast message is received by every processor. 
Under these very probable conditions, the broadcast protocols 
excel. 

To simplify our performance model, we assume optimisti- 
cally that all processors are equally likely to broadcast at every 
time, that every message broadcast is received by every 
processors, and that every message acknowledges the message 
broadcast immediately before it. Thus, there are no negative 
acknowledgments and no retransmissions. Consequently, for 
each extension of the total order, there is only one candidate 
message and, once sufficient messages have been broadcast by 
distinct processors, every processor will decide to include that 
message in the total order. 

For example, in a one-resilient system with n = 10 
processors, the minimum number of messages required is 
r(n + 2)/21= 6. A message can be included in the total order 

once five further messages from five different processors have 
been received. Of course, we cannot assume that the next five 
messages will be from different processors, but we can 
compute the probability of receiving messages from five 
different processors. This is related to a well-understood 
problem, the “urn problem” [ 161. The derivation of the 
performance models is too complex to present here; conse- 
quently, we display only a few samples of our performance 
results. 

Fig. 5 shows the probability of incurring delays between 
receipt of a message and its inclusion in the total order for 
various configurations. Such delays are often referred to as the 
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Fig. 5. Probability of incurring delays between receipt of a message and its 
inclusion in the total order. The horizontal axis represents the delay in 
message transmissions. The curves are labeled with the number of 
processors in the system and the resiliency of the system. The unlabeled 
dashed curve represents a four-processor one-resilient subsystem within a 
ten-processor system. 

latency of the protocol. Examining the graph for the ten- 
processor one-resilient case, we note that there is a 0.15 
probability that the message can be placed in the total order 
after five additional messages (i.e., the next five messages all 
came from different processors), a 0.38 probability that six 
messages suffice (two messages came from the same proces- 
sor), and a 0.59 probability that seven messages suffice. The 
expected number of additional messages required before a 
message can be placed in the total order is 7.5. 

Smaller systems are able to place messages in the total order 
after less delay than larger systems; for a four-processor one- 
resilient system the expected number of additional messages 
is only 3.3. Since the four-processor one-resilient case 
performs so well, it might be thought that, even when more 
processors are available, processors should be grouped in 
fours with the algorithm applied only to messages within a 
group, ignoring other messages. Fig. 5 shows the probability 
of delay for a four-processor one-resilient subgroup of a ten- 
processor system. Although the smaller subgroup can some- 
times decide on the total order very quickly, more often it is 
delayed while messages from other processors are broadcast. 
Overall, the four-processor subgroup performs worse then the 
full ten-processor one-resilient system, the expected delay 
being increased from 7.5 to 8.3 messages with a large increase 
in the variance. Thus, broadcasting is more effective than 
multicasting in establishing the total order. 

Even if the mean delay is acceptable, we must also consider 
the possibility of occasionally incurring a very long delay 
before a message can be placed in the total order. Fig. 6 shows 
the probability of not deciding on a candidate set as the number 
of broadcast messages increases. It can be seen that for a ten- 
processor one-resilient system the probability of remaining 
undecided diminishes by a factor of lo- 3 with every ten 
messages and that by the time 50 messages are broadcast the 
probability is indeed truly negligible. 

We now compare the performance of Trans and Total, again 
for a ten-processor one-resilient system and for a message 
transmission time of 1 ms, against the best existing algorithms 
for point-to-point and multicast communication [23], which 
run on a three-processor subsystem. Fig. 7 shows the expected 
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Fig. 6. The probability of not deciding on a candidate set to include in the 
total order diminishes rapidly as more messages are broadcast. 
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Fig. 7. The delay to reaching fault-tolerant agreement as a function of the 
load on the system. A  ten-processor one-resilient system is assumed. The 
point-to-point and multicast algorithms use a three-processor subsystem to 
reach agreement. 

delay from the moment at which a processor seeks the use of 
the bus to broadcast a request for a fault-tolerant agreement 
until it receives the resulting agreement. Note the change of 
scale on the horizontal axis of this graph. As the load 
increases, the broadcast protocols show improved perform- 
ance because the required six messages from distinct sources 
can be obtained sooner with higher traffic. The small increase 
in delay at very high traffic rates is caused by waiting to obtain 
access to the bus. Opt imum use of these protocols requires that 
processors without messages to broadcast should periodically 
broadcast null messages. 

With no reception faults, the Trans and Total protocols are 
capable of more than 700 fault-tolerant agreements per second 
with very low delay. In contrast, the point-to-point and 
multicast protocols exhibit acceptable performance only at low 
agreement rates, deteriorating rapidly at more than 30 
agreements per second. The performance advantages of Trans 
and Total are evident. Agreement rates of 100 or more per 
second are typical in current high-performance transaction 
processing systems. While it is possible to reduce the number 
of fault-tolerant agreements required in distributed systems, a 
price is paid in design complexity and in risk of rollback. 

The computational costs of the Trans and Total protocols 
must also be considered. In the worst case the computational 
costs are infinite, but the overall mean computational cost is 
very close to the best case cost in which all messages have 
been received by every processor, there is only one candidate 
message, and the decision can be made in stage 0. We are 
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currently investigating the computational costs and devising 
efficient implementation algorithms for the protocols. Certain 
modifications to the protocols, such as acknowledging mes- 
sages from a source only in sequence number order, permit 
substantially simpler and more efficient implementations. 

[I21 

[I31 

[I41 

IV. CONCLUSION [I51 
The Trans and Total protocols are in the early stages of their 

development, but already it is clear that broadcast communica- 
tion can provide large performance improvements for distrib- 
uted fault-tolerant systems when appropriate protocols are 
used. The use of broadcast communication will make it 
feasible to develop high-performance transaction processing 
systems using fault-tolerant distributed architectures rather 
than the centralized architectures that are currently used. 

[I61 
[I71 

[fsl 

u91 
Imposing a consensus total order on broadcast messages 

eliminates one of the traditional problems in the design of 
distributed systems, the lack of a global system state. Without 
a global system state, complex reasoning is necessary about 
what information is known to each processor. The agreed total 
order on broadcast messages imposes a common system 
history and, thus, a common system state with each proces- 
sor’s maintaining as much of the system state as is necessary 
for its functioning. Consequently, distributed systems need be 
no more difficult to design than asynchronous centralized 
systems. 

PO1 

[211 

WI 
1231 

~241 

Data Communications Networks, Services and Facilities, Red Book 
VIII.2, Geneva: CCITT, 1984. 
D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchro- 
nism needed for distributed consensus,” JACM, vol. 34, no. 1, pp. 
77-97, Jan. 1987. 
M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of 
distributed consensus with one faulty process,” JACM, vol. 32, no. 2, 
pp. 374-382, Apr. 1985. 
H. Garcia-Molina and A. Spauster, “Message ordering in a multicast 
environment,” in Proc. IEEE 9th Int. Conf. Distrib. Computing 
Syst., 1989, pp. 354-361. 
N. L. Johnson and S. Katz, Urn Models and Their Application. 
New York: Wiley, 1977. 
H. Kopetz et al., “Distributed fault-tolerant real-time systems: The 
Mars approach,” IEEE Micro, vol. 9, no. 1, pp. 25-40, Feb. 1989. 
H. Kopetz, G. Griisteidl, and J. Reisinger, “Fault-tolerant membership 
service in a synchronous distributed real-time system,” in Proc. IFIP 
Int. Working Conf. Dependable Computing for Crit. Appl., 1989, 
pp. 167-174. 
S. W. Luan and V. D. Gligor, “A fault-tolerant protocol for atomic 
broadcast,” in Proc. IEEE 7th Symp. Reliable Distrib. Syst., 1988, 
pp. 112-126. 
P. M. Melliar-Smith and L. E. Moser, “Trans: A broadcast protocol 
for distributed systems,” to be published. 
L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, “On the 
impossibility of broadcast agreement protocols,” to be published. 

, “Asymptotic broadcast agreement protocols,” to be published. 
K. J. Perry and S. Toueg, “Distributed agreement in the presence of 
processor and communication faults,” IEEE Trans. Software Eng., 
vol. SE-12, no. 3, pp. 477-482, Mar. 1986. 
L. L. Peterson, N. C. Buchholz, and R. D. Schlichting, “Preserving 
and using context information in interprocess communication,” ACM 
Trans. Comput. Syst., vol. 7, no. 3, pp. 217-246, Aug. 1989. 

The protocols also demonstrate that agreement in a distrib- 
uted fault-tolerant system is not inherently expensive using 
existing local area networks. In an n-processor one-resilient 
system, the Trans and Total protocols require, under favor- 
able and quite probable conditions, only one broadcast 
message per agreement, and they reach that agreement after 
only [(n + 2)/21 broadcast messages from distinct proces- 
sors. These numbers of broadcast messages approximate the 
minimum possible. 
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