
www.manaraa.com

P. M. MELLIAR-SMITH, MEMBER, IEEE, LOUISE E. MOSER, MEMBER, IEEE, AND VIVEK AGRAWALA

Abstract-We present an innovative approach to the design of fault- processors agree on exactly the same sequence of broadcast
tolerant distributed systems that avoids the several rounds of message
exchange required by current protocols for consensus agreement. The

messages.
approach is based on broadcast communication over a local area It is easy to demonstrate that placing a total order on
network, such as an Ethernet or a token ring, and on two novel protocols, broadcast messages, so that every working processor proc-
the Tram protocol, which provides efficient reliable broadcast communi- esses the same messages in the same order, provides an
cation, and the Total protocol, which with high probability promptly immediate solution to the agreement problem. Once this total
places a total order on messages and achieves distributed agreement even
in the presence of fail-stoo. omission. timing, and communication faults. order is determined, distributed actions can be carried out
Reliable distributed operations such as locking, update and commitment, using simple sequential fault-tolerant algorithms. The strategy
typically require only a single broadcast message rather than the several is very efficient: for example, locking records in a distributed
tens of messages required by current algorithms. database typically requires only a single broadcast message to

claim a lock and a single broadcast message to release it.
Index Terms-Agreement problem, broadcast communication, com-

munication protocols, distributed systems, fault tolerance, local area
Based on this strategy, it is possible to design simple and

networks, total order. efficient but very robust distributed systems.

I. INTRODUCTION A. Existing Agreement Protocols

M ANY important activities in a distributed system involve
simultaneous coordination of several processors. The first areas of computer science to directly address the

Among these are scheduling and load balancing, synchroniza- problems of reaching agreement in a fault-tolerant system
tion, process migration, remote procedure calls, nested atomic were those of distributed databases [l] and remote procedure
transactions, access to distributed information, locking, up- calls [4]. In neither case were good solutions immediately
date and commitment, and transaction logging. All of these forthcoming and it soon became apparent that the general
activities require agreement among processors as to which problem of reaching agreement in a system subject to faults
processor should undertake, or has undertaken, an action. underlay many of the difficulties encountered. Subsequently,

Unfortunately, significant problems exist in the design of it was shown that the problem of reaching agreement is not
algorithms for reaching asynchronous distributed agreement merely hard but actually impossible in an asynchronous
when processors can fail. Aside from some strong impossibil- system [14]. Asymptotic protocols were devised that reach
ity results [131, [141, [21], existing algorithms are very agreement with high probability but with correspondingly high
expensive, requiring for a group of five processors, 40 costs [5], [6], [23].
messages, and perhaps 40 acknowledgments to reach agree- The most detailed existing description of a reliable atomic
ment with no failures and more messages in the presence of broadcast protocol is that of Chang and Maxemchuk [7], [S].
processor failures or communication errors [23]. Thus, all of All messages pass through an intermediary node, called the
the activities above, activities that are essential to distributed token site; an elegant token-passing protocol is used to detect
systems and distributed applications, are rather expensive. failures at the token site, to select a new token site, and to

We present a novel efficient approach to asynchronous retransmit messages affected by the failure. Typically, about
distributed agreement that is based on broadcast communica- three messages are required for each broadcast message, and
tion. The basic strategy consists of the latency is reasonable at low loads but increases at high

l an efficient broadcast (or multicast) protocol, the Trans loads. As with almost all of the other protocols described here,
protocol, which ensures that every message broadcast or the need to recognize a failed processor, and to reconfigure the
received by any working processor is received by every system to exclude it, introduces long delays when a processor
working processor, and fails.

l an efficient protocol, the Total protocol, which with high Kopetz [171, [181 developed and implemented a practical
probability promptly places a total order on broadcast mes- atomic multicast protocol for real-time systems. His Mars

sages, ensurmg that even in the presence of faults all working system is fully synchronous and uses a TDMA broadcast
medium with simple algorithms and low overhead. Failure of a

Manuscript received April 21, 1989; revised August 29, 1989. This work
processor must be detected but introduces no delay to other

was supported in part by the National Science Foundation Grant CCR89- messages. The design is very suitable for real-time systems,
08515. but a fully synchronous approach is rather inflexible for

The authors are with the Department of Electrical and Computer Engineer-
ing and the Department of Computer Science, University of California, Santa

transaction processing and other asynchronous applications.
Barbara, CA 93 106. The HAS system of Cristian [1 I] is based on fabricating an

IEEE Log Number 8931912. atomic broadcast from unreliable message communication. TO

10459219/90/0100-0017$01 .OO 0 1990 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. I, NO. 1, JANUARY 1990 17

Broadcast Protocols for D istributed Systems

www.manaraa.com

18 IEEETRANSACTIONSONPARALLELANDDISTRIBUTEDSYSTEMS,VOL.1,NO.1,JANUARY 1990

avoid the impossibility results associated with fully asynchron-
ous systems, his system uses loosely synchronized clocks and
timeouts with an upper bound on message transit time. More
flexible is the V system [9] which employs broadcasting but
makes no guarantee of delivery or recovery. Higher efficiency
is obtained at the cost of passing much of the work of recovery
on to the application program. Cheriton [lo] also investigated
multicast protocols, accepting the inevitability of multiple
acknowledgments but demonstrating that careful optimization
of the protocol can reduce the costs to a more acceptable level.

Luan and Gligor [191 devised an atomic broadcast protocol
based on a variation of three-phase commit that uses voting to
avoid blocking. Their algorithm requires over 4n messages
per atomic broadcast in a system of size n, but under high load
conditions many messages can be ordered per execution of the
protocol so that the overhead can become quite low. The
latency of the algorithm remains high however. The algorithm
can operate without explicitly detecting the failure of proces-
sors. Garcia-Molina and Spauster [151 have also devised
algorithms for atomic multicast based on point-to-point com-
munication over a spanning tree.

Quite close in concept to our approach is the ISIS system of
Birman and Joseph [2], [3], which is based on the idea of
broadcasting and placing a total order on broadcast messages.
ISIS differs, however, in that its developers did not have an
efficient broadcast acknowledgment protocol, such as the
Trans protocol, available to them, and their total order
protocol, due to Skeen is less efficient than the Total protocol.
To recover reasonable efficiency, ISIS employs the ingenious
ideal of virtual synchronous application programs, but the
overhead costs are still high.

Peterson, Buchholz, and Schlichting [24] devised the Psync
protocol which also uses an approach similar to ours,
constructing a partial order which is then converted into a total
order. However, their algorithms are weaker than Trans and
Total, requiring the system to be partially synchronous and to
block until a failed processor is detected and removed from the
configuration.

B. Context of the Broadcast Protocols
Our broadcast communication model is intended to match

typical local area networks, such as the Ethernet or the token
ring. Processors are selected to broadcast at random from
among the processsors seeking to use the communication
medium. A processor’s broadcast message is received imme-
diately or not at all by the other processors. Broadcast
messages are assumed to satisfy the requirements of the Trans
and Total protocols described below.

A reception fault occurs when a processor fails to receive a
broadcast message. Reception faults are caused relatively
infrequently by the physical communication mechanisms and
rather more frequently by exceeding the processing and
message buffering capacity of the processor. The choice of
processors at which a reception fault occurs is assumed to be
random rather than malicious. Network partitioning faults are
accommodated, and the protocols continue to operate uninter-
rupted in a component of the partition with at least 2n/3
processors.

The model also assumes that processors are subject to fail-
stop, omission, and timing faults but not to malicious faults. A
processor that has failed makes no further broadcasts, while a
working processor continues to broadcast, although not
necessarily within any fixed time constraint. In a partitioned
system, the processors in a component of the partition appear
to have failed to processors in the other components.

Operating systems, particularly Unix, are prone to pauses of
a few seconds during which little happens even though the
processor has not failed and normal processing will resume.
Protocols that are required to detect processor failures in order
to make decisions must accept occasional pauses during which
the whole system stops briefly or, alternatively, abort proces-
sors and incur frequently the overhead of determining a new
configuration.

The Trans and Total protocols do not attempt to detect
processor failures because, as data link layer protocols, they
must make decisions very quickly, typically within a few
mill iseconds or tens of mill iseconds. Rather, as fault-tolerant
protocols, they determine a total order promptly with high
probability even in the presence of failed processors, recover-
ing automatically from transient processor failures and tran-
sient network partitioning. However, for effective implemen-
tation, detection of failed processors by a higher-level protocol
of the protocol hierarchy is required. For example, the Trans
protocol retains copies of messages until they have been
received and acknowledged by all processors in the configura-
tion. Consequently, the protocol must be informed that a
processor has failed and has been removed from the configura-
tion so that message buffer space can be recovered.

The design of the Trans and Total protocols assumes that the
communication interface will include an interface processor
and buffer space sufficient to receive, buffer, process, and
acknowledge every message delivered by the communication
medium. Much of the processing costs of these protocols will
be carried by the communication controller rather than by the
main processor, and only messages intended for the main
processor need be delivered to it even though the communica-
tion controller processes every message. Although simple
Ethernet controllers do not have this capability, controllers
that accept and process every message can readily be
designed. Bearing in mind the importance of communication
in high-performance distributed systems, the expense of a
capable communications interface processor, while not negli-
gible, should be compared to the costs of sophisticated display
and disk controllers in modern computers.

II. THE TRANS BROADCAST PROTOCOL

Many distributed computer systems use a communication
mechanism that is physically a broadcast medium, such as an
Ethernet, token ring, 1553 bus, or packet radio system. The
advantage of a broadcast communication medium is that it
makes distribution of a message simultaneously to several
destinations physically possible. Existing standard communi-
cation protocols do not allow distributed systems to make use
of the broadcast capability of the physical communication
medium. Rather, existing protocols require all messages to be
point-to-point from a single source to a single destination.

www.manaraa.com

MELLIAR-SMITH et al.: BROADCAST PROTOCOLS

The Trans broadcast protocol [20] uses a combination of
positive and negative acknowledgment strategies to achieve
efficient reliable broadcast or multicast communication. Mes-
sages can be broadcast simultaneously to many destinations
without the need for explicit acknowledgment by every
recipient. An Observable Predicate for Delivery determines
which processors have received a message, even though they
did not acknowledge it directly.

Trans provides reliable communication despite a noisy
communication medium and processor fail-stop, omission, or
timing faults. Multicast, rather than fully broadcast, communi-
cation is readily achieved by operating several subnets over the
same local area network, a standard feature provided by
existing protocols. Alternatively, a destination address list
may be used to denote the processors for which the message is
intended; other processors will typically receive and possibly
acknowledge the message but will otherwise ignore it.

Within the IS0 protocol hierarchy, the primary responsibil-
ity for ensuring reliable transmission across the broadcast
medium lies with the data link layer [121. The Trans protocol
is directed towards that layer of the hierarchy and provides
services appropriate to that layer only. While Trans can
determine whether a processor has acknowledged receipt of a
message, it relies on a higher-level protocol to determine
network membership following a failure.

By the performance measures of number of messages and
utilization of the communication medium, the Trans protocol
is clearly better than typical point-to-point protocols whenever
the application requires broadcasting or multicasting. The
most significant performance advantages of Trans result,
however, from its use in conjunction with the Total protocol to
achieve agreement in fault-tolerant distributed systems.

A. The Protocol

The basic idea behind the Trans protocol is that acknowl-
edgments for broadcast messages are piggybacked on mes-
sages that are themselves broadcast and typically seen by all
other processors. The operation of Trans is illustrated in the
following scenario:

-Processor P broadcasts a message.
-The message from processor P is received uncorrupted by

processor Q.
-Processor Q includes a positive acknowledgment for P’s

message in Q ’s next message.
-Processor R on receiving Q ’s message is aware that P’s

message has been acknowledged and that there is no need for
R also to acknowledge it in its next message; instead processor
R acknowledges Q ’s message.

-If processor R has not received the message from P, the
message from Q alerts R of this loss and, therefore, R includes
a negative acknowledgment for P’s message in R’s next
message.

We now give a property-theoretic definition of the Trans
protocol. We wish to define just those properties of the
protocol that are necessary for correct operation and to avoid
confusing them with the details of one specific implementation
that is in no way preferable to any other. Thus, we define the

19

data link layer protocol Trans by means of the following
requirements:

Message Format
l Each message is broadcast with a header in which there is

a message identifier containing the identity of the broadcasting
processor and a message sequence number. Other fields of the
header, such as a message destination address list for
multicasting, may be present but do not play a part in the
protocol.

l Retransmissions are identical to the original transmission.
The retransmitted message thus contains exactly the same
acknowledgments, positive and negative, as the prior trans-
mission of the message. Note that the retransmission can be
broadcast by any processor, not just by the processor that
originated the message.

l To avoid large delays in a lightly loaded system, if a
processor has no messages pending, it may construct a null
message to carry acknowledgments. The acceptable delay
before transmitting a null message may differ for positive and
negative acknowledgments.

Data Structures
Each processor maintains
l An acknowledgment list of message identifiers with

positive and negative acknowledgments. The acknowledg-
ments in this list are transmitted with the next message the
processor broadcasts.

l A received list of messages the processor has received
uncorrupted, or has broadcast in the recent past, and may need
to rebroadcast. Messages are retained in this list until there is
no possibility of retransmission being required.

l A pending retransmissions list of message identifiers.
The processor received each of these messages and also a
negative acknowledgment for each of them. These messages
will be retransmitted by the processor unless it observes that
they have already been broadcast by some other processor.

Sending a Message
l When a processor prepares a message for broadcast, it

appends its acknowledgment list to the message. Positive
acknowledgments that are appended to the message are
removed from the acknowledgment list, but negative acknowl-
edgments are retained. If there are too many acknowledgments
to append to the current message, negative acknowledgments
are given priority over positive acknowledgments.

Receiving a Message
When a processor receives a message,
l It adds the message identifier with a positive acknowledg-

ment to its acknowledgment list and adds the message to its
received list. If the message identifier is present with a
negative acknowledgment in the acknowledgment list, it
deletes the identifier from that list. If the message is present in
the retransmissions list, it deletes the message from that list
as well.

l If a positive acknowledgment is appended to the message,
the processor deletes from its acknowledgment list any

www.manaraa.com

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 1990

matching positive acknowledgment. If the acknowledgment is
for a message that is not in its received list (i.e., for a message
that it has not received), it adds the identifier for that message
with a negative acknowledgment to its acknowledgment list.

l If a negative acknowledgment is appended to the message
then, if the acknowledged message is already on its received
list, the processor adds the message identifier to its retransmis-
sions list; otherwise, it adds the message identifier to its
acknowledgment list with a negative acknowledgment unless
the identifier is already present.

l A processor can also recognize that it has not received a
message when it receives a message with a sequence number
more than one greater than the largest sequence number of a
message in its acknowledgment list from the same source.
Again, one or more identifiers with negative acknowledg-
ments are added to its acknowledgment list. If there is a large
discontinuity in sequence numbers, it may be preferable not to
attempt to recover the missing messages at the data link level,
but rather to refer the problem to the network level of the
protocol hierarchy.

Retransmission Timeout
l If a processor has not received a positive acknowledg-

ment for a message it broadcast within some time interval, it
adds the message to its retransmissions list.

Pruning the Received List
l A broadcast message with the appended acknowledg-

ments is retained in the received list until the processor has
determined (using the Observable Predicate for Delivery) that
all of the processors in the configuration have received that
message.

The protocol described above is reliable against momentary
transmission failures. It can operate over networks that are
connected but not completely connected and even where the
interconnection topology changes dynamically. However,
under such circumstances, the efficiency of the protocol is
adversely affected.

B. Examples
As an example of the operation of Trans, consider the

following message sequence in which upper-case letters
represent messages (we do not bother to denote the source of
the message directly), lower-case letters represent acknowl-
edgments, and overhead bars denote negative acknowledg-
ments.

A Ba Cb DC Ecd Cb Fee

Here message A is only acknowledged by message B. Other
processors that are aware of the presence of B’s acknowledg-
ment do not acknowledge A in their subsequent messages. It is
this feature that reduces the number of acknowledgments
required. Note that the positive acknowledgment of C that
accompanies ,message D alerts a processor that it did not
receive message C and, thus, causes the negative acknowledg-
ment of C that accompanies message E. This negative
acknowledgment triggers a retransmission of C with precisely
the acknowledgments that accompanied the original transmis-

sion; thus, the retransmission cannot acknowledge message E
that caused the retransmission. The processor broadcasting
message F also acknowledges message E in addition to
message C; in doing so, it implicitly acknowledges messages
B and D and, through B, message A as well. Thus, each
message will contain typically only a few acknowledgments
but will implicitly acknowledge many other messages through
the transitivity of positive acknowledgments.

The effect of missing several messages can be seen in this
next example.

A Ba Cb DC Ecd Cb Fiiec Ba Gfb

Here the processor broadcasting message E received neither
message C nor B, but is informed by message D only of the
loss of C. When C is retransmitted with a positive acknowl-
edgment for B, the processor becomes aware that it missed B
too and transmits a further negative acknowledgment with
message F. Thus, a short sequence of missing messages can be
recovered quite quickly and easily; of course, this technique is
inappropriate for recovery from an extended processor failure.

The simple linear sequence of acknowledgments shown
above may be rather optimistic. Checking the cyclic redun-
dancy code, manipulating the acknowledgment queues, and
constructing message packets all take time, but efficient use of
the communication medium requires that the next message be
transmitted with as little delay as possible. Thus, the idealized
expectation that reception of a message will be reflected in the
acknowledgments that accompany the next message is unreal-
istic and is not required by the Trans protocol. Delays in
broadcasting acknowledgments and the broadcasting of extra
acknowledgments, either positive or negative, have no logical
effect on the protocol and only a small effect on performance,
as shown in the next example which assumes that no message
is acknowledged by the next broadcast message.

A B Ca Dab Ebc Fed Gcde Hef Ca Igh Jghc

Here, because messages are not processed instantaneously,
each message is acknowledged by two subsequent messages.
Note that the negative acknowledgment mechanism is still
effective in provoking the necessary retransmission.

C. The Partial Order
Trans is a very robust protocol that is resilient to most forms

of failure, with the exception of Byzantine failures and
complete failure of the communication medium. It is easy to
prove an Eventual Delivery Property, which states that for any
message, eventually, if any working processor has broadcast
or received the message, then all working processors have
received it [20].

The positive and negative acknowledgments contained in
messages permit processors to determine whether a processor
has received a message even though the processor did not
acknowledge the message directly. We define an Observable
Predicate for Delivery, denoted by OPD(P,A,C), which
states that processor P can be certain that the processor that
broadcast message C has received and acknowledged, directly

www.manaraa.com

MELLIAR-SMITH I’! al.: BROADCAST PROTOCOLS 21

Fig. 1. The graphical representation of the positive acknowledgments
represented by arrows and negative acknowledgments represented by lines
marked with x’s in a sequence of broadcasts by four processors.

or indirectly, message A at the time of broadcasting message
C. The predicate is true if and only if processor P receives a
sequence of messages, not necessari ly consecutive broadcast
messages, such that

l The sequence commences with message A and ends with
message C.

l Every message of the sequence, other than A, positively
acknowledges its predecessor in the sequence or is broadcast
by the processor that broadcast its predecessor in the se-
quence.

l No message in the sequence is negatively acknowledged
by message C.

By enumeration, the Observable Predicate for Delivery can
be used to determine that a message has been received by all
processors in the configuration and can therefore be deleted
from the data structures maintained by the Trans protocol. The
Observable Predicate for Delivery enables the processors to
construct a partial order relation on the broadcast messages.

The Partial Order: In the partial order constructed by
processor P, message C follo ws message B if and only if
OPD(P, B, C) and, for all messages A, OPD(P, A, B)
implies OPD(P, A, C).

The partial order satisfies an important property, the Prior
Reception Property, which states that if message C is included
in the partial order, then at the time processor PC broadcast
message C, it had received and acknowledged, directly or
indirectly, all messages that precede C in the partial order.
Note that OPD(P, B, C) may remain undefined indefinitely if
processor PC, fails. In such a case, message C can never be
included in the partial order.

As an example of the construction of the partial order,
consider the following sequence of messages broadcast by four
processors where A, is the first message broadcast by
processor P,,, etc.

Fig. 1 graphically represents the positive and negative
acknowledgments resulting from this sequence of messages.
The heavy arrows represent acknowledgments while the
lighter lines marked with X’s represent negative acknowledg-
ments. The acknowledgment by message Dz for its predeces-
sor Di is implicit rather than explicit.

Fig. 2. The partial order derived from the acknowledgments shown in
Fig. I. For example, message C, does not follow message A, because A,
follows D, and processor PC had not received D, when broadcasting C,.

Fig. 2 shows the partial order constructed from these
acknowledgments. Message C, does not follow message A,
because Ai follows D, and processor PC had not received DI
when broadcasting C1. Rather, C2 follows Al because PC had
received the retransmission of D, by the time that it broadcast
Cz. Similarly, B2 does not follow C’, because Cz follows A,
which processor Ps had not received at the time it broadcast
Bl. Instead, B2 follows 02 since Ps received Dz and all the
messages PO had received at that time.

It is relatively easy to show using the Eventual Delivery
Property that all working processors construct the same partial
order and that the failure of a processor may result in some of
its messages being excluded from the partial order [20]. In
case that the network partitions, the working processors in the
same component of the partition construct the same partial
order. This partial order, constructed from the acknowledg-
ments of the Trans protocol and satisfying the Eventual
Delivery Property and the Prior Reception Property, is the
base upon which the Total protocol is built.

III. THE TOTAL PROTOCOL

The objective of the Total protocol is to reach distributed
fault-tolerant agreement by placing a total order on messages
and by ensuring that all working processors determine the
same total order. The Total protocol is based on the partial
order relation derived from the acknowledgments of messages
by the Trans protocol. There is only one partial order, which
must be the same for all processors, but some processors may
be aware of only part of the partial order because they have not
yet received all of the messages that have been broadcast.
Typically, the partial orders of the various processors differ
only in the more recent messages.

If the system were completely reliable, the partial order
would be a total order. Unfortunately. it is possible for one
message to be received by a subset of processors and another
message to be received by a disjoint subset, thus providing no
information by which to order them. There is also a risk that a
processor has failed and will never be heard from again; thus,
it must be possible to make decisions in the absence of
messages from some of the processsors. Moreover, one or
more processors may be unable to broadcast a message for
some period of time, even though they have not failed, because
of contention for the bus or other internal activities.

Even with broadcast communication, the acknowledgments
of messages can yield an arbitrary partial order. The impor-
tance of broadcast communication is that such bad cases are

www.manaraa.com

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 1990

rare; broadcast communication almost always yields a partial
order that can quickly be converted into a total order.

The Total protocol is a fault-tolerant algorithm for convert-
ing a partial order into a total order, whose probability of
determining an extension to the total order asymptotically
approaches unity as more messages are broadcast. The
algorithm is resilient to fewer than n/3 faults where n is the
number of processors in the system. We have also developed a
more complex but slightly slower algorithm for determining a
total order that is resilient to fewer than n/2 faults [22].

A. The Protocol
The Total protocol needs no additional broadcast messages

beyond those required by the Trans protocol. However,
determination of the total order does not occur immediately
after a message is broadcast but must wait for reception of
broadcasts by other processors. The protocol incrementally
extends the total order by selecting messages from those in the
partial order but not yet in the total order.

A message that does not follow in the partial order any other
message aside from those already in the total order is a
candidate message. Clearly, there must be at least one
candidate message, and there can be at most a single candidate
message from each source. The total order is extended by a
decision to include a set of candidate messages in the total
order. Each such candidate set is voted on separately. The vote
of a message is determined by the votes of the messages that
precede it in the partial order, and the decision of a processor
is determined by the votes of the messages in its partial order,
not on the decisions of other processors.

Voting on a candidate set takes place in a sequence of
stages; different candidate sets have different sequences of
stages. A message votes on a candidate set in a stage only if no
previous message from its source has already voted on the
candidate set in that stage. In stage 0, the vote of a message on
a candidate set depends on whether or not that message follows
in the partial order other candidate messages. In stage i, where
i > 0, a message votes on a candidate set if it follows in the
partial order enough messages that voted in stage i - 1. The
number of votes required for a decision and for a further vote
must be at least Nd and N,, the parameters to the algorithm.

Resil ience Nd Nu

n+2 n-1
1 2 2

n+3 n-2
2 2 2

n+k+l
k<; ~

n-k - .
2 2

The Total protocol is defined, completely rigorously, by the
following voting and decision criteria; these criteria determine
which candidate set is chosen for inclusion in the total order.

The Voting Criteria
In stage 0
l A message votes for a candidate set if that message

follows in the partial order every message in the candidate set

Fig. 3. A simple example for six processors in which every broadcast
message is received by every processor. There is only one candidate set
{A I } , and the decision to extend the total order to include message A, can
be made as SOOII as message D, is received.

and it follow no other candidate message. (A candidate
message votes for the set containing only itself.)

l A message votes against a candidate set if that message
follows in the partial order any candidate message other than
those in the candidate set. (A candidate message votes against
all sets of which it is not a member.)

In stage i where i > 0
l A message votes for a candidate set if

-the number of messages that if follows in the partial
order and that voted for the candidate set in stage i - 1 is at
least N,, and

-it follows in the partial order fewer message that voted
against the candidate set than voted for the set in stage i - 1.

l A message votes against a candidate set if
-the number of messages that it follows in the partial

order and that voted against the candidate set in stage i - 1 is
at least N,, and

-it does not vote for the candidate set in stage i.

The Decision Criteria
In stage i where i > 0
l A processor decides for a candidate set if

-the number of messages in its partial order that voted
for the candidate set in stage i is at least Nd, and

-for each proper subset of the candidate set, the
processor had decided against that proper subset.

l A processor decides against a candidate set if
-the number of messages in its partial order that voted

against the candidate set in stage i is at least Nd.

Once a decision has been made in favor of a candidate set,
the messages of that set are included in the total order in any
arbitrary but deterministic order, and the whole process is
repeated. Since each message follows itself in the partial
order, a message can include its own vote in stage i- 1
towards the totals required to vote in stage i. The votes and
decisions need not be included in the messages themselves but
can be deduced from the acknowledgments in the messages.

A processor can always determine the vote of a message in
its partial order since the message would not have been placed
in the partial order if any message that precedes it had not been
received. The Trans protocol guarantees that if any working
processor places a message in the partial order then eventually
every working processor does.
B. Examples

First consider a one-resilient system of six processors that
requires at least four votes for a decision and three votes for a
further vote. Fig. 3 shows a very simple situation that might
result when every broadcast message is received by every

www.manaraa.com

MELLIAR-SMITH 1’1 al.: BROADCAST PROTOCOLS

Fig. 4. A more complex example in which messages are not received by all
processors. Here the candidate sets {A, }, {E, } and {F, } obtain too many
negative votes in stage 0 and, thus, are decided against, but the set (E,, F, }
obtains four favorable votes in stage 0 from D,, C,, Ez. and F2. enough for
a favorable decision. Even if message Fz is lost, there remain three
favorable votes in stage 0, but there arefour favorable votes
Ez, D2, A2, and &. again enough for a favorable decision

in stage 1 from

processor. There is only one candidate message A 1, and the
messages A 1, B,, Ci, and D, are sufficient for a decision.
Thus, every processor on receiving message D1 will decide to
extend the total order to include message A,. To make this
decision there is no need to know what the other two
processors in the system are doing.

A more difficult situation is shown in Fig. 4, where
messages are not received by all processors. There are three
candidate messages A it El, and F, . The candidate sets {E, }
and {F, > are voted for only by the messages themselves.
Messages Al and B1 vote for the candidate set {A, }, but
messages C, and D2 do not because they follow other
candidate messages in the partial order. Messages D,, C,, E2,
and Fz vote for the candidate set {El, F, } , a sufficient number
of votes for a decision.

Note that the candidates in the set {A ,, El, FI } precede the
four messages C,, Dz, AZ, and Bz. Thus, no processor can
decide for the set {A ,, El, Fl } without first deciding against
the set {El, F, }.

We must also consider the possibility that processors may
fail at inconvenient moments. Suppose that processor PF- fails
some time after broadcasting message F, and before broad-
casting Fz. The other processors do not know whether PF had
received messages El, D1, C,, and E2 and, thus, had decided
for the set {E,, F1). Nor can they be confident that PF had
indeed failed; PF may be trying to broadcast but may be
blocked by contention for the bus, or it may be working on an
urgent task, or it may be taking a short siesta from which it
will awake to announce that is has indeed received those
messages and decided for {E,, FI } , or against, as the case may
be.

However, even without knowledge of processor PF’s vote,
three messages DI, C,, and E2 vote for the set {E,, F, } in
stage 0, and four messages E2, Dz, AZ, and BS follow those
three messages and, therefore, vote for {E,, F1 } in stage 1.
Consequently, messages Ez, Dz, AZ, and BZ suffice for the
decision to include the set {El, F, } in the total order.

C. Validity

The validity of the algorithm depends on showing that for
each extension of the total order

23

l If a processor decides for (against) a candidate set, then
no processor decides against (for) that set.

l If a processor decides in favor of a candidate set, then no
processor decides in favor of a different set.

l If a processor decides in favor of a candidate set in stage
i, then each working processor decides in favor of that set in
stage h where h 5 i + 1.

l If a processor includes a particular candidate set at its jth
extension of the total order, then every working processor
includes that set at its jth extension of the total order.
Consequently, the total orders determined by all working
processors are identical.

l If a working processor broadcasts a message that follows
each message in a candidate set S, then in each stage each
working processor broadcasts a message that votes on S.

l A processor cannot decide against the candidate set
consisting of all candidate messages in its partial order.

l If a message m ’ follows a message m in the total order,
then m does not follow m ’ in the partial order. Thus, the total
order is consistent with the partial order.

Each of these properties has been proved for the n/3
protocol and also for the n/2 protocol [22J. We can also
demonstrate that, given reasonable behavior by the broadcast
communication system, the probability of all processors
remaining undecided diminishes quite quickly to zero.

D. Performance Model

At first sight the protocols may appear to be somewhat
complex and, thus, likely to be slow and expensive. However,
if the local area network has reasonable reliability, then almost
every broadcast message is received by every processor.
Under these very probable conditions, the broadcast protocols
excel.

To simplify our performance model, we assume optimisti-
cally that all processors are equally likely to broadcast at every
time, that every message broadcast is received by every
processors, and that every message acknowledges the message
broadcast immediately before it. Thus, there are no negative
acknowledgments and no retransmissions. Consequently, for
each extension of the total order, there is only one candidate
message and, once sufficient messages have been broadcast by
distinct processors, every processor will decide to include that
message in the total order.

For example, in a one-resilient system with n = 10
processors, the minimum number of messages required is
r(n + 2)/21= 6. A message can be included in the total order

once five further messages from five different processors have
been received. Of course, we cannot assume that the next five
messages will be from different processors, but we can
compute the probability of receiving messages from five
different processors. This is related to a well-understood
problem, the “urn problem” [161. The derivation of the
performance models is too complex to present here; conse-
quently, we display only a few samples of our performance
results.

Fig. 5 shows the probability of incurring delays between
receipt of a message and its inclusion in the total order for
various configurations. Such delays are often referred to as the

www.manaraa.com

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO, 1, JANUARY 1990

_J Probability of Including
1.0 a Meaaaoe in

IIIIIIll I I I I II 1111 (1
1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 18 19 Xl

Fig. 5. Probability of incurring delays between receipt of a message and its
inclusion in the total order. The horizontal axis represents the delay in
message transmissions. The curves are labeled with the number of
processors in the system and the resiliency of the system. The unlabeled
dashed curve represents a four-processor one-resilient subsystem within a
ten-processor system.

latency of the protocol. Examining the graph for the ten-
processor one-resilient case, we note that there is a 0.15
probability that the message can be placed in the total order
after five additional messages (i.e., the next five messages all
came from different processors), a 0.38 probability that six
messages suffice (two messages came from the same proces-
sor), and a 0.59 probability that seven messages suffice. The
expected number of additional messages required before a
message can be placed in the total order is 7.5.

Smaller systems are able to place messages in the total order
after less delay than larger systems; for a four-processor one-
resilient system the expected number of additional messages
is only 3.3. Since the four-processor one-resilient case
performs so well, it might be thought that, even when more
processors are available, processors should be grouped in
fours with the algorithm applied only to messages within a
group, ignoring other messages. Fig. 5 shows the probability
of delay for a four-processor one-resilient subgroup of a ten-
processor system. Although the smaller subgroup can some-
times decide on the total order very quickly, more often it is
delayed while messages from other processors are broadcast.
Overall, the four-processor subgroup performs worse then the
full ten-processor one-resilient system, the expected delay
being increased from 7.5 to 8.3 messages with a large increase
in the variance. Thus, broadcasting is more effective than
multicasting in establishing the total order.

Even if the mean delay is acceptable, we must also consider
the possibility of occasionally incurring a very long delay
before a message can be placed in the total order. Fig. 6 shows
the probability of not deciding on a candidate set as the number
of broadcast messages increases. It can be seen that for a ten-
processor one-resilient system the probability of remaining
undecided diminishes by a factor of lo- 3 with every ten
messages and that by the time 50 messages are broadcast the
probability is indeed truly negligible.

We now compare the performance of Trans and Total, again
for a ten-processor one-resilient system and for a message
transmission time of 1 ms, against the best existing algorithms
for point-to-point and multicast communication [23], which
run on a three-processor subsystem. Fig. 7 shows the expected

Prohbilii of Not Seleciilrg
-2 a Message for the Total Order

10 - ‘... “...

-4
i... “..\,

10 -
\....,

\....
.\

“..... .i.,,
-6

10 -
” ..,.

.L,
. . ‘\.. 10/3 No RSc%#ii
\..,, Y., F&S

-a ‘....
10 - 1 O/l No Reception “....,,

FaLlItS ‘....,
“...,

“..<
-10 ‘k

10 -
x..\, .‘,-.

‘....,
-12 x..,

‘l.,
‘.. ,,

10 - ‘.., \.
‘%..., ‘...,,

-14
..... May to lnduding

10 - “... ‘Y,, a Message in
theTdaJorder

I
10 2u 30 40 50 60 70 60 90 100

Fig. 6. The probability of not deciding on a candidate set to include in the
total order diminishes rapidly as more messages are broadcast.

D&y to Reaching
Fault-Tolerant

‘00 Agreem8nt
90 in Milliseconds

60

70 I :. Point-to-Point
No Remption Fauls

60 i Munii
50 <’ NoRece@bnFarts w

40 ,.’ i +z, Receplim FarI&

10.Processor
1.Rdimt Syhm
1 fl-Spert.kSWJS

Fig. 7. The delay to reaching fault-tolerant agreement as a function of the
load on the system. A ten-processor one-resilient system is assumed. The
point-to-point and multicast algorithms use a three-processor subsystem to
reach agreement.

delay from the moment at which a processor seeks the use of
the bus to broadcast a request for a fault-tolerant agreement
until it receives the resulting agreement. Note the change of
scale on the horizontal axis of this graph. As the load
increases, the broadcast protocols show improved perform-
ance because the required six messages from distinct sources
can be obtained sooner with higher traffic. The small increase
in delay at very high traffic rates is caused by waiting to obtain
access to the bus. Opt imum use of these protocols requires that
processors without messages to broadcast should periodically
broadcast null messages.

With no reception faults, the Trans and Total protocols are
capable of more than 700 fault-tolerant agreements per second
with very low delay. In contrast, the point-to-point and
multicast protocols exhibit acceptable performance only at low
agreement rates, deteriorating rapidly at more than 30
agreements per second. The performance advantages of Trans
and Total are evident. Agreement rates of 100 or more per
second are typical in current high-performance transaction
processing systems. While it is possible to reduce the number
of fault-tolerant agreements required in distributed systems, a
price is paid in design complexity and in risk of rollback.

The computational costs of the Trans and Total protocols
must also be considered. In the worst case the computational
costs are infinite, but the overall mean computational cost is
very close to the best case cost in which all messages have
been received by every processor, there is only one candidate
message, and the decision can be made in stage 0. We are

www.manaraa.com

MELLIAR-SMITH et al.. BROADCAST PROTOCOLS 25

currently investigating the computational costs and devising
efficient implementation algorithms for the protocols. Certain
modifications to the protocols, such as acknowledging mes-
sages from a source only in sequence number order, permit
substantially simpler and more efficient implementations.

[I21

[I31

[I41

IV. CONCLUSION [I51
The Trans and Total protocols are in the early stages of their

development, but already it is clear that broadcast communica-
tion can provide large performance improvements for distrib-
uted fault-tolerant systems when appropriate protocols are
used. The use of broadcast communication will make it
feasible to develop high-performance transaction processing
systems using fault-tolerant distributed architectures rather
than the centralized architectures that are currently used.

[I61
[I71

[fsl

u91
Imposing a consensus total order on broadcast messages

eliminates one of the traditional problems in the design of
distributed systems, the lack of a global system state. Without
a global system state, complex reasoning is necessary about
what information is known to each processor. The agreed total
order on broadcast messages imposes a common system
history and, thus, a common system state with each proces-
sor’s maintaining as much of the system state as is necessary
for its functioning. Consequently, distributed systems need be
no more difficult to design than asynchronous centralized
systems.

PO1

[211

WI
1231

~241

Data Communications Networks, Services and Facilities, Red Book
VIII.2, Geneva: CCITT, 1984.
D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchro-
nism needed for distributed consensus,” JACM, vol. 34, no. 1, pp.
77-97, Jan. 1987.
M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” JACM, vol. 32, no. 2,
pp. 374-382, Apr. 1985.
H. Garcia-Molina and A. Spauster, “Message ordering in a multicast
environment,” in Proc. IEEE 9th Int. Conf. Distrib. Computing
Syst., 1989, pp. 354-361.
N. L. Johnson and S. Katz, Urn Models and Their Application.
New York: Wiley, 1977.
H. Kopetz et al., “Distributed fault-tolerant real-time systems: The
Mars approach,” IEEE Micro, vol. 9, no. 1, pp. 25-40, Feb. 1989.
H. Kopetz, G. Griisteidl, and J. Reisinger, “Fault-tolerant membership
service in a synchronous distributed real-time system,” in Proc. IFIP
Int. Working Conf. Dependable Computing for Crit. Appl., 1989,
pp. 167-174.
S. W. Luan and V. D. Gligor, “A fault-tolerant protocol for atomic
broadcast,” in Proc. IEEE 7th Symp. Reliable Distrib. Syst., 1988,
pp. 112-126.
P. M. Melliar-Smith and L. E. Moser, “Trans: A broadcast protocol
for distributed systems,” to be published.
L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, “On the
impossibility of broadcast agreement protocols,” to be published.

, “Asymptotic broadcast agreement protocols,” to be published.
K. J. Perry and S. Toueg, “Distributed agreement in the presence of
processor and communication faults,” IEEE Trans. Software Eng.,
vol. SE-12, no. 3, pp. 477-482, Mar. 1986.
L. L. Peterson, N. C. Buchholz, and R. D. Schlichting, “Preserving
and using context information in interprocess communication,” ACM
Trans. Comput. Syst., vol. 7, no. 3, pp. 217-246, Aug. 1989.

The protocols also demonstrate that agreement in a distrib-
uted fault-tolerant system is not inherently expensive using
existing local area networks. In an n-processor one-resilient
system, the Trans and Total protocols require, under favor-
able and quite probable conditions, only one broadcast
message per agreement, and they reach that agreement after
only [(n + 2)/21 broadcast messages from distinct proces-
sors. These numbers of broadcast messages approximate the
minimum possible.

P. M. Melliar-Smith (M’89) received the Ph.D.
degree in computer science from the University of
Cambridge, Cambridge, England, in 1987.

Barbara
parallel

He was a senior research scientist and program
director at SRI International in Menlo Park (1976-
1987), senior research associate at the University of
Newcastle Upon Tyne (1973-1976), and principal
designer for GEC Computers Ltd. in England
(19641973). He is currently a member of the
faculty of the Department of Electrical and Com-
puter Engineering, University of California, Santa

[II

PI

[31

[41

151

[61

t71

181

191

[lOI

[Ill

REFERENCES

P. Bernstem and N. Goodman, “The failure and recovery problems for
replicated databases,” in Proc. ACM Symp. Prin. Distribut. Com-
puting, 1983, pp. 114-122.
K. P. Birman and T. A. Joseph, “Reliable communication in the
presence of failures,” ACM Trans. Cotnput. Syst., vol. 5, no. 1, pp.
47-76, Feb. 1987.
-, “Exploiting virtual synchrony in distributed systems,” in Proc.
ACM Symp. Operat. Syst. Prin., 1987, pp. 123-138.
A. Birrell and B. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39-59, Feb. 1984.
G. Bracha, “Asynchronous Byzantine agreement protocols,” Inform.
Computar., vol. 75, pp. 130-143, Nov. 1987.
G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” JACM, vol. 32, no. 4, pp. 824-840, Oct. 1985.
J. Chang, “Simplifying distributed data base systems design by using a
broadcast network,” in Proc. ACM SIGMOD ‘84, vol. 14, no. 2.
1984, pp. 223-233.
J. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Trans. Comput. Syst., vol. 2, no. 3, pp. 251-273, Aug. 1984.
D. R. Cheriton and W. Zwaenepoel, “Distributed process groups in the
V kernel,” ACM Trans. Comput. Syst., vol. 3, no. 2, pp. 77-107,
May 1985.
D. R. Cheriton, “VMTP: A transport protocol for the next generation
of communication systems,” in Proc. ACM Sigcomm Symp. Com-
mun. Architect. Protocols, 1986, pp. 406-415.
F. Cristian, H. Aghili, and R. Strong, “Atomic broadcast: From
simple message diffusion to Byzantine agreement.” in Proc. IEEE
Symp. Fault Tolerant Computing Syst., 1985, pp. 200-206.

-. -

.nd verification.

fault-tolerant dlstrlbuted

Louise E. Moser (M’87) received the Ph.D. degree
in mathematics from the University of Wisconsin,
Madison, in 1970.

From 1970 to 1987 she was a Professor of
Mathematics and Computer Science, California
State University, Hayward. In 1987 she moved to
the University of California, Santa Barbara, where
she has recently been appointed to a faculty position
in the Department of Electrical and Computer
Engineering. Her current research interests include
parallel and distributed systems, fault tolerance, and

Vivek Agrawala was born in Bikaner, India, on
August 28, 1963. He received the B.Tech. degree in
chemical engineering in 1984 and the M.Tech.
degree in computer technology in 1986 from the
Indian Institute of Technology, Delhi.

Since September 1986, he has been working
toward the Ph.D. degree in computer science at the
University of California, Santa Barbara. His re-
search interests include fault-tolerant communica-
tion protocols, distributed databases, algorithms,
and complexity.

